Real-Time 2D/3D Deformable Registration Using Metric Learning

نویسندگان

  • Chen-Rui Chou
  • Stephen M. Pizer
چکیده

We present a novel 2D/3D deformable registration method, called Registration Efficiency and Accuracy through Learning Metric on Shape (REALMS), that can support real-time Image-Guided Radiation Therapy (IGRT ). The method consists of two stages: planning-time learning and registration. In the planning-time learning, it firstly models the patient’s 3D deformation space from the patient’s time-varying 3D planning images using a low-dimensional parametrization. Secondly, it samples deformation parameters within the deformation space and generates corresponding simulated projection images from the deformed 3D image. Finally, it learns a Riemannian metric in the projection space for each deformation parameter. The learned distance metric forms a Gaussian kernel of a kernel regression that minimizes the leave-one-out regression residual of the corresponding deformation parameter. In the registration, REALMS interpolates the patient’s 3D deformation parameters using the kernel regression with the learned distance metrics. Our test results showed that REALMS can localize the tumor in 10.89 ms (91.82 fps) with 2.56 ± 1.11 mm errors using a single projection image. These promising results show REALMS’s high potential to support realtime, accurate, and low-dose IGRT.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

LNCS 7766 - Medical Computer Vision

We present a novel 2D/3D deformable registration method, called Registration Efficiency and Accuracy through Learning Metric on Shape (REALMS), that can support real-time Image-Guided Radiation Therapy (IGRT ). The method consists of two stages: planning-time learning and registration. In the planning-time learning, it firstly models the patient’s 3D deformation space from the patient’s time-va...

متن کامل

CLARET: A Fast Deformable Registration Method Applied to Lung Radiation Therapy

We present a novel 3D-to-2D registration method called CLARET (Correction via Limited-Angle Residues in External Beam Therapy) that has potential application to rapid and accurate image-guided radiotherapy in lung with low-dose imaging. CLARET contains three components: shape modeling, machine learning of regression matrices, and treatment application. It models the patient’s breathing space fr...

متن کامل

Assessing Accuracy Factors in Deformable 2D/3D Medical Image Registration Using a Statistical Pelvis Model

Deformable 2D-3D medical image registration is an essential technique in Computer Integrated Surgery (CIS) to fuse 3D pre-operative data with 2D intra-operative data. Several factors may affect the accuracy of 2D-3D registration, including the number of 2D views, the angle between views, the view angle relative to anatomical objects, the co-registration error between views, the image noise, and...

متن کامل

Dynamic tracking of a deformable tissue based on 3D-2D MR-US image registration

Real-time registration of pre-operative magnetic resonance (MR) or computed tomography (CT) images with intra-operative Ultrasound (US) images can be a valuable tool in image-guided therapies and interventions. This paper presents an automatic method for dynamically tracking the deformation of a soft tissue based on registering pre-operative three-dimensional (3D) MR images to intra-operative t...

متن کامل

2D/3D image registration using regression learning

In computer vision and image analysis, image registration between 2D projections and a 3D image that achieves high accuracy and near real-time computation is challenging. In this paper, we propose a novel method that can rapidly detect an object's 3D rigid motion or deformation from a 2D projection image or a small set thereof. The method is called CLARET (Correction via Limited-Angle Residues ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012